Characterization and Potential Application of Next Generation Commercial Surface Enhanced Raman Scattering Substrates
نویسندگان
چکیده
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملDetection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملSurface Enhanced Raman Scattering (SERS)-Based Next Generation Commercially Available Substrate: Physical Characterization and Biological Application
The development of a sensing platform capable of detecting and identifying hazards including biological, chemical, and energetic in nature is a long sought after goal of the Army and many other first responders. Surface enhanced Raman scatting (SERS) is one spectroscopic technique gaining popularity as a solution to many sensing needs due to its many advantages such as high sensitivity, little ...
متن کاملTargeting Biological Sensing with Commercial SERS Substrates
There is an increasing need and challenge for early rapid and accurate detection, identification, and quantification of chemical, biological, and energetic hazards in many fields of interest (e.g., medical, environmental, industrial, and defense applications). Increasingly to meet these challenges, researchers are turning interdisciplinary approaches combining spectroscopy with nanoscale platfo...
متن کاملUnraveling near-field and far-field relationships for 3D SERS substrates--a combined experimental and theoretical analysis.
Simplicity and low cost has positioned inkjet paper- and fabric-based 3D substrates as two of the most commonly used surface-enhanced Raman spectroscopy (SERS) platforms for the detection and the identification of chemical and biological analytes down to the nanogram and femtogram levels. The relationship between far-field and near-field properties of these 3D SERS platforms remains poorly unde...
متن کامل